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Abstract—An extremum principle is presented covering problems in solid mechanics equilibrium
analysis for piecewise linear softening materials. Problems formulated according to this principle
are expressed in a mixed “stress and deformation” form. The mechanics interpretation is limited
according to linear deformation kinematics. More specialized models, such as an extremum principle
in mixed form for linearly elastic materials, an equivalent to the minimum complementary energy
principle, and a statement of a bound theorem of Limit Analysis are identified as special cases within
the general formulation. Numerical results are presented for two examples of one-dimensional
structures made of inhomogeneous, softening material. The evolution of material degradation is
demonstrated via a set of solutions obtained for increasing load. Each solution of the set is
produced from a single application of a general purpose computer program for constrained nonlinear
programming problems, operating on 4 finite element interpretation of the nonlinear continuum.

1. INTRODUCTION

The purpose of this paper is to present a global formulation of equilibrium problems in
solid mechanics for systems made of softening material. The formulation is expressed in a
way to accommodate arbitrarily inhomogeneous, anisotropic materials. Local “state” is
represented in terms of a mixed “stress and deformation” measure. Also, material properties
enter the formulation partly in implicit form, through a combination of local and global
constraints. By virtue of these several features, a substantial flexibility in the representation
of constitutive properties is available in the model (how this is accomplished explicitly
becomes clear with the presentation of the problem statement given below). The formulation
itself comprises an extremum principle, where a load factor is to be maximized w.r.t. the
set of stress and deformation fields. As a result, the sometimes most challenging issues
related to existence and uniqueness are in the present circumstances moot, i.e. established
results from nonlinear optimization analysis of convex problems fully support a math-
ematical interpretation of the formulation. Also, making the association (in the usual way)
between convexity of the global problem statement and mechanical stability, a category of
problems can be identified for which, independent of the specific form of material softening
or degradation, the extremum character and thus the stability is preserved indefinitely with
increasing load.

The model presented here provides a convenience for the treatment of mechanics
problems that require for their interpretation the representation of a set of separate fields,
where each field is associated with a separate interval of the region of the solid. Of course
problems in the analysis of composites, where the separate fields are identified nominally
with the physical structure of constituent materials, belong to this category. Problems
involving material degradation, for example where an originally homogeneous medium is
rendered through the evolution of structural response into a set of regions each with
distinctive constitutive character (e.g. elasto-plasticity), have this property as well. Also,
availability of the extremum problem formulation described below is advantageous with
respect to the treatment of many of the issues arising routinely in analysis and in the
construction of models for computational purposes. Considerations in the treatment of
convergence and error analysis, the construction of algorithms, modelling of mechanisms
of material degradation, and so on, identify examples of the cited *“routinely arising issues™.
In addition, the present formulation makes it possible to obtain computational solutions
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for structures made of softening materials in a way that circumvents the need to use
incremental modelling (this is explained in Section 3 on Computational Results).

The material furnished in this paper is comprised of a presentation of the model for
the general problem formulation, a demonstration to show the several specific and/or
familiar extremum models imbedded within the general model (complementary energy
principle, theorem from limit analysis, etc.), a discussion and interpretation of necessary
conditions for the general problem statement, and a sample of results from implementations
for the computational treatment of 1-D systems made with inhomogeneous softening
material.

2. PROBLEM FORMULATION

In the usual paradigm for classical variational modelling of equilibrium problems
in elasto-mechanics, mixed formulations amount to stationarity principles, associated in
general with saddle-point problems in the stress and deformation variables. This is the case
for all the various forms of expression of the mixed principles [see e.g. Washizu (1982)],
each of which in effect has one or more equilibrium, constitutive or compatibility conditions
imposed as constraints on the functional of one or the other of the classical extremum
principles. It is also characteristic in the familiar forms of variational formulation for such
problems that the constitutive character of the structural material is represented in explicit
form.

The variational formulation described here is distinctive relative to these features, i.e.
constitutive character enters the problem statement partly in implicit form (a feasible set
in stress—strain space is identified in the problem formulation), and as described in the
introduction, the problem statement comprises a global formulation for a mixed model as
an extremum problem rather than as a “‘stationary principle”. Also, in the construction of
the problem formulation total stress is represented as a superposition of elements from
independent sets of admissible fields. Such constructions have precedent in the field of
mixture theory and in certain models used in rheology [see e.g. Atkin and Craine (1976)].
The extremum problem reflects maximization of a load factor, where all loads vary in
proportion to the load factor (viz. proportional loading), and the requirements of mechanics
modelling are introduced as constraints. This latter feature in effect provides an immediate
convenience for the relatively broader interpretation of the various attributes of the mech-
anics that go into the overall definition of an equilibrium field problem. Thus while the
form of the resulting problem statement is longer and appears to be relatively obtuse, the
formulation itself is in fact demonstrably broader and more convenient w.r.t. the business
of expressing such problems in general.

As a starting point in the construction of the subject extremum principle, note that the
general problem formulation is expressed in terms of two sets of fields, the set ¥ of at
least piecewise differentiable fields (stress constituents) ¢”;y = 1,2,..., N, and a set K of
(admissible displacements) fields u, where for the purposes of the present exposition the u
are continuous and piecewise twice differentiable. (For simplicity, the exposition is described
in this limited but relatively simple mathematical setting.) Total stress 7 in the composite
medium is expressed as a sum of independent elements from X plus a stress evaluated on
the basis of an element from set u, i.c.

N,

T = Z U;‘}+Lijk1uk,/~ (1)

y=1

The constituent fields ¢’ and u are at this point arbitrary elements within their respective
sets. The constitutive tensor L, interprets the constituent L;; 1, within total stress T of
(1) in terms of strains e(u) linear in the gradient of u, for an arbitrarily inhomogeneous,
linearly elastic material.
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For convenience in the presentation to follow, the “equilibrium field problem” is
expressed in a form consistent with simple boundary conditions. Thus, the total stress 7 of
(1) must satisfy:

T,'j,j+aXvi =0 in Q,

T”nj‘*’at, = 0 on F[, (2)

and the boundary conditions are summarized with the additional requirement u—g = 0 on
I', with g specified, and I'\+I", = I'. As indicated above, the representation which has
body forces and boundary tractions modified uniformly by the load factor « provides for
proportional loading. Also it is supposed that the individual constituent fields ¢’ are
constrained (limited) according to some measure of their magnitude. The substance of the
results described in this paper does not depend on the particular choice of the measure. For
the sake of simplicity, the constraints on stress are expressed for the development that
follows in the form of simple “yield conditions”. In other words, the fields are required to
satisfy

fi(6)—a><0 y=1,2,...,N,, 3)

where functions f7 are concave and piecewise smooth in ¢”.

As indicated by the notation in (3), values a} (“yield limits™) and the forms /7 are also
specified individually for the separate stress fields a”. These features, as well as whatever
additional detail is necessary to end up with a proper interpretation of the continuum
mechanics problem for the composite, show up as constraints in the statement of the
extremum problem formulation to be given next.

Note once again that with respect to their role in the variational modelling, the stress
fields ¢” and ““displacement” u are treated as independent. With this in mind, the proposed
extremum principle for the (mixed) system is stated :

Maximize load factor a with respect to the fields 67 and u and the scalar « itself,
within constraints of reflect (1)—(3) as well as a limit on what amounts to a measure
of energy associated with the two fields.

In other words, taking into account conditions (1)—(3), the equilibrium problem of a body
formed out of a general anisotropic elastic/softening material is expressed as:

[(P] max o
aeR!
I35
uek
subject to:
(9} (Z,07+ Lijui,) j+0X; =0 inQ,
(Zya?j +L,-jk,uk,,)nj —ol; = 0 on l"t,
(6)] (") -af <0 inQ,
(C3)

zy(L Uc(aV)dV)+J. Uw)dV—E <0.

Here loads X; and 1, constitutive tensor L, “‘stress limits” a,, and “energy bound” E are
the data. According to constraint (C3), the solution fields to problem [P] are bounded in
their combined energy norm [a similar energy measure appeared in the work of Bendsge
and Sokolowski (1988)]; U and U, represent specific strain energy and specific comp-
lementary strain energy, respectively (for the linear strain model) :
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1 N 7o L
U= ank/f?i,/ﬁkh U, = Zciik/UijGA'/-

Properties L,,, are distinct from C,,, and are independent of strain state. Note that
constraint (C2) of problem [P] comprises an implicit bound on energy U independent of
(C3).

Problem [P] describes a convex problem within the framework of generalized nonlincar
programming analysis [see e.g. Clarke (1983)]. The convexity property assures that a
solution identified with the set of necessary conditions from this analysis is unique. It 1s
possible through a comparison of the necessary conditions with the requirements of mech-
anics to confirm that the result does in fact comprise the solution for equilibrium analysis of
continua comprised of the designated form of nonlinear materials. The following additional
considerations related to the formulation are noted :

—Having the construction (1) for total stress incorporated within [P] provides for a broad
capability in the modelling of material properties. This follows from the feature that the
properties of each constituent ¢ (i.e. the individual moduli C;;, as well as “‘strength
limits™ f* — (aﬁ) < 0) may be specified separately. so that the total stress T may be tailored
component by component.

—The formulation [P] is applicable for arbitrary load state, so long as material tensors £,
and C,, of the total stress meet the usual thermodynamic requirements for a real material.
In other words, within these requirements for constitutive properties, equilibrium of the
system is unconditionally stable. Thus it is always possible with this model to find equi-
librium solutions over a load regime that carries the solid through its full evolution of
material softening (local degradation).

With the imposition of [L,;;, = 0 — U = 0]. problem {P] reduces to the form:
(P1] max 2
R
subject to:

ol +oX, =0 InQ,

1

ip

agim—at; =0 onl,,

i

fle)y~a <0 inQ 7=12.....N.

. J U.e”)dV—E <0.
Q

The set T of stress fields a7 for this problem is the same as the one defined above. Problem
[P1] is a slightly generalized form of the unified statement for *‘idealized elastoplasticity™
reported earlier [Taylor (1989), Ben-Tal and Taylor (1991)]. That is, [P1] interpeted for a
single stress field (i.e. N, = 1) corresponds to “deformation plasticity theory™ for the
elastic/perfectly plastic idealization. Hlavacek er al. reported on a different “alternative
formulation™ in their recent paper [Hlavacek et al. (1992), also see Ciarlet (1991), and
Comi et al. (1992)]. For N, > 2 it represents a piecewise-linear softening material with an
ultimate capacity corresponding again to an idealized plasticity-like limit. This constitutive
simulation matches in form the stress—strain character of the ““Besseling material”™ (Bessel-
ing, 1984). As a comparison, the net constitutive character incorporated in formulation [P}
is similar, but it provides via the term L, 1, for a sustained elastic reserve capacity, rather
than the “ideally plastic” limit of the Besseling material.

To continue the interpretation, the classical model identified with the upper bound
theorem of “Limit Analysis” may be recovered in turn from [P1]. This result, namely
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(P2] max «

aeR!
acX

subject to:
O',M—OLX,"—"O in Q,
O’,]nj—ott, = 0 in rt,

f(6)—a’* <0 inQ,

follows from [P1] for N, =1 and the condition that (data value) E is sufficiently large
relative to the specified “‘yield limit” value (the energy constraint becomes superfluous).

It is possible also to recover from [P1] a statement equivalent to the classical ‘“Minimum
Complementary Potential Energy” principle. This result, obtained for the converse limits
on the constraint bound values in [P1], namely for limits a,; y = 1,2,..., N, sufficiently
large relative to the energy constraint bound E (the “yield limits” are rendered inactive
throughout the domain of the body), is

(P3] max o

aeR!
ocX

subject to:

Y
2,0%

—aX; =0 inQ,

Z},J,anj —Otti = on rt,

z,,f U(6")dV—E<0.
Q

Note that the “equivalence” may be confirmed (to the level of a stationary principle)
through an examination of the necessary conditions of [P3]. Also, the superposition of
fields 67 in [P3] is redundant, i.e. the model simply represents elastostastics for a linearly
elastic system with “material stiffness™ equal to that of the combined constituent fields
working in parallel.

Two additional points of interest are cited in connection with the variational problem
statement. First, it may be more convenient in certain circumstances to work with the
original (i.e. most general) formulation expressed in the alternative form:

(P] min { j [Z,U.(e")+ U] dV}
aeR! 0

ocX
uek

subject to:
(Equilibrium equation and stress boundary condition as in [P])

f(@)~a} <0 inQ, y=12,...,N,,
<

o—a

0
0.
Version [P’], where the argument of the former energy constraint is to be minimized while
the load « is now constrained from below, is equivalent to [P]. Observe that the load
constraint is active at the solution, and so the value « represents in effect a specified load
(of course this kind of alternative formulation is also available for the various problems
[P1]-[P3] discussed above). Given the convexity of the two problems, the equivalence of
[P] and [P’] can be verified simply on the basis of a comparison of their necessary conditions.

Lastly, it is noted that for the limit {a, —» 0; all y} the original problem [P] reduces to
the statement :
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max &
as®!
ueK

subject to:
(Lijgt)+oX; =0 inQ,

Loy —at; =0 on T,

J Ule(w)]dV—E < 0.
Q

The energy constraint is active at the solution, and so this problem is identified with the
relatively uninteresting result that the equilibrium field that maximizes load maximizes total
strain energy.

In summary, problem [P] (and its equivalent [P’]) comprises an extremum principle
for the global response of a system made of a nonuniform elastic/softening material.
Solutions generated for a set of increasing data values of energy bound E collectively
provide information on the evolution of stress and deformation fields with increasing load.
The formulation as stated is a ““‘mixed” (i.e. stress and displacement) form. Note that for
the case N. = | and data value a, sufficiently large so that constraint (C2) is inactive and
with L, = (Cyj) ', formulation [P] (or [P’]) becomes simply the statement of a “mixed
principle” for a linearly elastic material.

3. NECESSARY CONDITIONS; SUFFICIENCY

Formulation [P] has been presented as a characterization of equilibrium mechanics
for an inhomogeneous, general form of anisotropic, softening material. The constitutive
character of the material is represented in the model via the stiffness tensor L, the set of
compliance tensors C?;,,, and the set of “stress limit conditions™ f7(¢”) —a; < 0. The problem
statement is supportable within the context of standard resuits in the mathematical mod-
elling of nonlinear, nonsmooth optimization problems [see e.g. Clarke (1983)]. A moderately
detailed exposition of the necessary conditions associated with [P] is presented next, with
the idea that an examination of these conditions provides for an interpretation of the model
on grounds that are least in part closer to more familiar descriptions in solid mechanics.

Stationarity in problem [P} with respect to variation of the scalar « (load factor)
requires (/.; and A,; symbolize multipliers associated with the equilibrium field equations
and stress boundary conditions respectively) :

—1 +J }ue,-X,vdV—J‘ Apit;dA = 0. “4)
! T,

This comprises a load weighted normalization of the multiplier functions 4. and 4.
Necessary conditions associated with variation among constituent stress fields 67 may be
expressed :

(fei+Ap)n; =0 on I,
(Ai+ 4o, =0 onT,
Aty =0 onI'—TI,
~—(ﬂ.e,~_j+lej_,-)/2+/1” gg- +ACl ol = inQ, pB=12,....N, 5
ij

## and A represent the multipliers on constraints (C2) and (C3) respectively. Stationarity
w.r.t. variation of the displacement field calls for the solution of [P] to satisfy:
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Liju(—Aj+Ag;) =0 inQ,
Lij(Aei+2p)n; =0 onl,
Lijyien; =0 onI—T\. (6)

The complementarity condition for the material degradation constraint (C2) is stated :
wlffe?)—ajl=0 inQ, B=12,...,N.. 0
Also the condition
>0 inQ, f=12,...,N;

must be met at the solution.
Toward an interpretation of this (partial) list of necessary conditions, note from the
boundary equations of (5) and (6) that A,; = — A, on I. In fact, by the combined equations

(6)
L=u inQ ®)

(As = Aoif/A and @# = uP|A are introduced for convenience and w.o.1.0.g.). Accordingly, the
field equation (5) can be written:

VSRIVL
& = Cijklak1+ﬂ m inQ, g=12,...,N. )]
ij

The set of intervals in Q where for the fth constituent f?(¢”) < aj is identified by Qg
According to (7), ## = 0 in Qg and so from (9) :

8,-1- = C?jklail in QEﬂ. (10)

In other words, Qg are these intervals in which the fth constituent behaviour is unsoftened,
and (10) reflects the requirement of compatibility among these constituent fields and the
field e(u). In the alternative situation, i.e. where u > 0; f#(6B) = a} (notation (¢f) identifies
stress values on the “limiting surface”), from (9)

_ct e Q
& = CipOl+ 15— in (Q—Qg). an

i

Here the second term on the right-hand side of (11) reflects the difference between total
strain ¢;; and the measure of strain corresponding to 6; on the “limit surface” (this quantity
corresponds to what is identified in the appropriate context as the “plastic strain”; here it
simply reflects a relaxation of the above-mentioned compatibility).

Since in problem [P] (as in equivalent [P’]) constraint (C1) is linear and the (energy-
like) (C3) is quadratic, convexity of the problem depends only on the requirement that
functions f7(¢") in constraint (C2) are concave. Thus it may be appreciated that the
convexity property prevails for the full range of models of material degradation (softening)
covered within this simple requirement on the form of (C2). As noted in Section 1, for such
convex problems the set of necessary conditions for [P] are also sufficient (sufficiency for
this problem can also be verified easily via classical arguments). Note also that the system
is mechanically stable (unconditionally with respect to load so long as &(u) is not identically
zero, and the requirements of Section 1 on constitutive tensors are met). Given these
properties, the variational formulation may be directly useful as a basis for the development
of computational means, for example, or to establish bounds on the overall properties of
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composites, and so on. These and other issues related to applications are discussed briefly
below.

4. APPLICATIONS FOR COMPUTATIONAL RESULTS

Procedures for the numerical solution of constitutively nonlinear problems generally
are based on an interpretation that is incremental with respect to the load/deformation
process, with special means (updating or corrector steps) incorporated to limit cumulative
error. On the other hand, for problems where the present extremum formulation is appli-
cable it is possible to obtain numerical solutions using computational means for direct
minimization. This alternative to incremental methods is applied here, i.e. a rendering of
formulation [P] into discrete (computational) form is used to obtain sets of solutions for
two rudimentary example problems in one-dimensional continua. Given the interpretation
into discrete form, these solutions are produced using a software package (EMP by Klaus
Schittkowski, University Bayreuth, D 8580 Bayreuth) created for the treatment of con-
strained problems in nonlinear optimization. Examples were solved using a commercial
program (Abaqus) based on a conventional incremental model as well, in order to provide
a comparison of results.

A computer program was written in order to obtain solutions for problems of an
axially loaded continuum bar fixed at its ends. The program reflects an interpretation of
problem formulation {P] via a finite element model for the one-dimensional structure made
up of arbitrarily inhomogeneous. softening materials. The two specific example structures
to be analysed are shown schematically in Fig. 1. The lowest admissible order of element

load a/unit length

1\9T‘r7ﬂ54332L1
01987y C
=10

material i.d.

load o/unit length applied at nodes

e BB e e i

55 '3:2§1§

A1i2:3. 4!
! \ v .
/ : iz c N A VO
L=10.
core material no. shell material
area= 1.0 area =0.6597

Loads, Supports, and Element Numbers - Second Example Problem

Fig. 1. Schematic diagrams of the structures and loads for the two example problems.
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Material curves for example 1
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Material curves for example 2
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Fig. 2. Total stress T versus strain ¢ for each element of the model for Example 1.

interpolation functions consistent with the (mixed) model were used, namely “constant
stress” and “linear displacement” elements.

In order to show an application to the analysis for a specifically inhomogeneous
structure, a 10-element model was set up to simulate a situation where both stiffness and
“onset of softening” vary over the length of the structure. The element constituent properties
for this case are given in Fig. 2. Results for an analysis of the bar under uniformly distributed
load, reflecting the evolution of response under increasing load, are given in the form of
total stresses in Fig. 3, and displacements in Fig. 4. The change in character of the “stress
distribution” with increasing load simply reflects the effect of progressive material degra-
dation in this example. For low load level and before softening occurs, the interval Qg is
identified with the entire length of the bar. Softening progresses from the leftmost element
uniformly toward the right-hand end as the load is increased, so the unsoftened interval
Qg is identified with a shrinking portion of the bar adjacent to the right support.

The structure of the second example, still one-dimensional, is made up of two parallel
layers each with distinct properties. The load is applied to one layer and so the example
provides a possibility to observe how loads (stresses) diffuse between the layers. Again, the
change in the pattern of this redistribution of stresses as a consequence of the material
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Stress constituent distribution for various load factors
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Fig. 3. Stress distributions for various loads (Example 1).

softening can be observed ; this is shown in Fig. 5, where total stresses in the “‘core material”
and the “shell material” are plotted. A set of results showing the evolution of deformation
response for this example is given in Fig. 6.

An application was made to the commercial program Abaqus to obtain a comparison
solution for the load « = 44.2 in the first example problem; the evolution of material
softening is well devioped at this relatively high level of loading. Using a 10-element model
here to match the one used with the extremum formulation, the results as represented by
total stresses and displacements evaluated to four significant figures were indistinguishable.
Results for the second example loaded to a level « = 49.7 are compared in Table 1. Here
the worst discrepancy between results obtained by direct minimization and those produced
using Abaqus is of the order of 1.1% For this result the loading process was interpreted
via 65 increments within the workings of Abaqus.

It is not the intention with the presentation of the examples in this section to argue
that the approach for numerical solution via direct minimization is in any sense better

Displacement distribution for various load factors

0.12

0.10

Nodal X displacement
°© o
& 2

)
®

0.02

- . X

-l
7

Y
-1
15

Node location

Fig. 4. Displacements at points along the bar for various loads (Example 1).
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Total stress distribution in core material for various load factors
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Total stress distribution in shell material for various load factors
300
200 :\‘\
E ‘\0
é 100 .\ 0\
'®.
~— s,
3 T\
g ol T e T e e e
E ‘§§g\=.‘~3\0
\’
N
= '\.
-200 o\.
Load factors: 4.6,9.3, 208, 39.5,49.7 N
L
| L ! L | 11 L1
-300, 1T 2 3 4 5 6 71 8 9 10
Element center position

Fig. 5. Stresses in “shell” and “core” materials for the two layered bar of Example 2.

than conventional approaches. Judgement on the relative merit of computational means
developed on the basis of the extremum problem formulation for the subject class of
nonlinear problems cannot be made without first having an implementation done and a
thorough survey of applications made for two- and three-dimensional problems.

5. SUMMARY

One should expect that certain known results available in structural analysis based on
linearly elastic material behavior may be extended in a straightforward way to accommodate
softening materials, using the formulation described in this paper. The usefulness of being
able to identify with an extremum principle for the purpose of development of com-
putational models is cited as an example. It is reasonable to suppose that the sort of
modelling represented in Teply and Reddy (1991), where a particular form (Aboudi’s
model) of a two-material composite is interpreted directly into a finite element form, is
applicable for the composite of nonlinear materials as well, without significant change. Also
the methods of analysis used to predict bounds on the effective properties of composites
[e.g. Milton and Kohn (1988)] should also apply for the composite with softening constituent
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Displacement distribution for various load factors
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Fig. 6. Displacements at points along the bar for various loads (Example 2)

materials, within the limitation to “proportional loading”. It is interesting as well to
speculate on what conveniences might be available in connection with the modelling dis-
cussed in Talbot and Willis (1991) for constitutively nonlinear composites, or in relation
to the subject of damage mechanics at large. With respect to the latter of these areas, the
flexibility to express modelling for local damage in terms of both stress and deformation
variables—which convenience is afforded by virtue of having the equilibrium mechanics
represented via a “mixed model”’—is noteworthy. At the same time, it is important to bear
in mind that the formulation of this paper as it stands is not proposed for use in situations
where stress/strain reversal occurs.

As noted in the introduction, the representation in formulations [P} and [P’} of total
stress in terms of a superposition of independently controlled constituent fieids provides
for considerable flexibility in the simulation of properties for softening materials. The
procedure by which such simulation is accomplished can be formalized without difficulty.
In fact the global formulation accommodates a generalized form of superposition construc-
tion, i.e. a form where the constituent fields are arbitrary but derivable from potentials.

In another area, the extremum principle [P] provides a most convenient basis for the
treatment of problems in the optimal design of composites composed of (possibly) softening
constituents [this kind of application is exemplified for discrete structures in Taylor and
Logo (1992)].

Table 1. Comparison of results for load « = 49.7 in example two

Solution values for total stress

By direct minimization Produced using the program

Element formulation [P] Abaqus

position Core material Shell material Core material Shell material
0.5 49.29 264.3 49.29 264.3
1.5 37.37 207.0 37.37 207.0
2.5 35.89 133.9 35.89 133.9
3.5 32.16 64.26 32.14 64.28
4.5 11.97 19.53 11.84 19.73
5.5 —11.97 —19.53 ~11.84 —19.73
6.5 —32.16 —64.26 -32.14 —64.28
7.5 —35.89 —~133.9 —35.89 —~133.9
8.5 —37.37 —207.0 -—37.37 -207.0

9.5 —49.29 —264.3 —49.29 —264.3
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